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Abstract. In this paper we apply some theoretical predictions that arise in the mean-field
framework for a large class of infinite-range models to structural glasses and we present a first
comparison of these predictions with numerical results.

We find evidence for the energy density relaxation at low temperatures consisting of two
steps: the convergence to some metastable state with a mean-field-like behaviour and the decay of
metastable states by activated processes. We define an appropriate distanced between states and
we study the corresponding equilibrium distributionP(d) that results in being highly nontrivial
in the glassy phase.

1. Introduction

In recent years some theoretical progress in our understanding of glasses [1] has been
achieved by comparing the results obtained for soluble models of generalized spin glasses
[2, 3] with structural glass properties, under the assumption that the phase space of the
two systems is similar. This progress is partly due to the use of the replica method and of
related concepts such as replica symmetry breaking, coupled replicas, dynamic transitions
etc.

In a nutshell many of the ideas of this replica approach are already present in the
original papers of Gibbs and Di Marzio [4]. However, the use of the whole panoply of
tools developed in the study of spin-glass models allows us to put these ideas into a much
sharper form and to test them in numerical (and possibly real) experiments. Moreover the
comparison of structural glasses and generalized spin glasses, introduced in [5], has proven
extremely useful and the conjecture that the two models have similar energy landscapes has
been a fruitful starting point.

In this paper we will not discuss the theoretical basis under which this scenario has been
derived but we will concentrate our attention on the physical picture and on the consequences
of these predictions on the statistical properties of relatively small samples.

The basic assumption is that, at sufficiently low temperatures but still in the liquid phase,
the system is almost always trapped for a long time in one of the exponentially large number
of local minima of the free energy. The number (N ) of these local minima is related to the
configurational entropy or complexity6 by

N ≈ exp(N6(T )) (1)
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N being the number of particles and formula (1) being asymptotic for largeN . The total
entropy densityS is the sum of two contributions: the entropy density of each minimum
and the complexity. This description is valid forTK < T < TD. The complexity [6] (which
starts from a nonzero value atTD) is supposed to vanish linearly at a lower temperature,
(i.e. at the temperatureTK ) where the height of the typical barriers becomes infinite. The
correlation time diverges atTK , and one can argue in favour of a Vogel–Fulcher law (e.g.
τ ∝ exp(−A(T − TK)−ν), whereν ' 1).

This scenario is implemented in a large class of infinite-range models [5], where a more
detailed picture of the phase space of the system is obtained. Indeed these infinite-range
models are soluble because the appropriate mean-field theory is exact. The study of the
mean-field theory for these models is not a trivial task: the phase-space structure of the
configurations with low energy is quite complex and this shows up in a rather interesting
behaviour of the system, both at equilibrium and in its approach to equilibrium. The
existence of these complex structures implies the need for modern tools (such as the replica
formalism) to study the properties of these systems.

The aim of this paper is to spell out some of the theoretical predictions that are obtained
in the mean-field framework for these infinite-range models, to apply them (with the
appropriate modifications) to the case of structural glasses and to present a first comparison
of these predictions with numerical simulations.

2. A mini theoretical review

The main hypothesis of the Gibbs–Di Marzio’s approach is that at low temperatures the
system nearly always stays close to a minimum of the free energy and that the long-time
dynamics is dominated by the time needed to escape from one valley to another.

As noted in [5] this scenario is implemented in long-range models in which detailed
computations can be done and a more precise picture can be obtained [7, 8].

Let us consider, for definiteness, a spin model where the local variables are spins (σ(i),
i = 1 . . . N). They could be either Ising spinsσ(i) = ±1 or spherical spins, i.e. real
variables which satisfy the constraint∑N

i=1 σ(i)
2

N
= 1. (2)

The HamiltonianH(σ) has a form that we do not need to specify here. There are many
different models with quite different Hamiltonians which share the properties that we are
going to describe. In the following we will consider afinite large system and only at the
end will we send the value ofN to∞.

We suppose that the phase space can be broken into many valleys separated by high
mountains. In other words, the free energy (or the energy at low temperature) has many
minima and the free-energy barrier [9] which we have to cross to go from one state to
another is quite large. In the infinite-range approximation it will be proportional toN . We
can consider all the local minima of the energy as functions of the configuration and we
can associate a valley to each of them at zero temperature. At higher temperatures we have
to consider the minima of the free energy and when increasing the temperature the valleys
will disappear.

We could also define the valleys in a dynamical way as regions of configuration space
in which the system remains trapped for a long time. This definition is similar to the
previous one if we assume that the long time behaviour of the dynamics at low temperature
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is dominated by activated processes which correspond to the crossing of high free-energy
barriers.

Each valley (which we label byα) may be characterized by a magnetization

mα(i) = 〈σ(i)〉α (3)

where〈·〉α is the statistical expectation value restricted to theα-valley. One can define a
free energyF [m], which is a function of all the local magnetizations, whose functional
form depends on the system. The valleys are local minima of this free energy.

2.1. Equilibrium properties

One finds in a very large class of models the following behaviour for the equilibrium
properties depending on the temperature [6–12].
• For temperatures higher thanTm there is only one minimum of the free energyF [m]

atm(i) = 0∀i. In this case the total free energy of the systemF is given byF = F [0].
• At temperatures lower thanTm there is an exponentially large number of minima. The

contribution of these minima to the partition function can be estimated by

Zm =
∫

df exp(−Nβf +N6(f, β)) ≈ exp(−Nβf ∗ +N6(f ∗, β)) (4)

wheref is the free-energy density (Nf = F ), exp(N6(f, β)) is the number of minima of
the free energy densityf andf ∗ is the value off which maximizes the exponent, that is
a function ofβ.

Below Tm we can distinguish three regions.
• For T > TD the contribution to the partition function of the nontrivial minima can be

neglected and the free energy is still given byF [0].
• For TD > T > TK the contribution to the partition function of the nontrivial minima

is dominant. The number of minima which dominate the partition function is exponentially
large and the total entropy of the system is given by

S = Sm +N6(f ∗, β) (5)

whereSm is the contribution to the total entropy of one minimum and6(f ∗, β) > 0.
The magnetization averaged over all the minima is given bym(i) = 〈σ(i)〉 =∑

α wα〈σ(i)〉α, wherewα ∝ exp(−βFα) is proportional to the contribution of theα-
minimum to the partition function (

∑
α wα = 1).

In this region the magnetization averaged over all the minima is zero and the total free
energy which is dominated by the contribution of all the nontrivial minima is still given by
F [0]. The free energy and all the other static equilibrium quantities are fully regular atTD.
• For T < TK , 6(f ∗, β) = 0. For T slightly larger thanTK one finds6(f ∗, β) ∝

(T − TK), so that the complexity (and consequently the entropy) has a discontinuity in the
temperature derivative atT = TK , which is the transition point from a thermodynamic point
of view. Here the entropy becomes equal to the contribution of a single minimum and this
temperature may be identified with the Kauzmann temperature.

The regionT < TK can be characterized by a peculiar behaviour. The partition function
is dominated by those states which have the minimum free energy and there are some minima
for which the quantitieswα remain of order 1.

In the previous description we have neglected the possibility of crystallization, i.e. the
formation of a highly ordered state which leads to a first-order transition. If we consider
this possibility we have to distinguish two cases, systems with quenched disorder in the
Hamiltonian and systems without disorder (often with a translation-invariant Hamiltonian).
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• There are systems whose Hamiltonian contains quenched disorder. A typical example
would be

H =
∑
i,k,l

J (i, k, l)σ (i)σ (k)σ (l) (6)

where the variablesJ are random (e.g. Gaussian).
Another example (in which the mean-field approximation is nonexact) would be a system

in which the particles interact not only with themselves but also with an external, fixed,
random potential. It is clear that if the external potential is strong enough, the free energy
of the crystal phase may become quite large, while that of the glassy phase may be much
less affected.
• Other systems may not contain quenched variables in the Hamiltonian. A typical

example [13] is

H =
N∑
i=1

[ N∑
k=1

1√
N

sin

(
2π ik

N

)
σ(k)− σ(i)

]2

with σ(i) = ±1. (7)

Another example would be a system in which the particles interact only with themselves
with a given potential.

The two categories of models seem rather different one from another; however, it has
been noticed that in the mean-field approximation systems belonging to the two categories
behave in quite a similar way, the only difference being that systems without quenched
disorder may crystallize.

While these kind of results can be proved in the long-range models, their validity for
short-range models (such as structural glasses) remains an open question. In this paper we
would like to present numerical evidence for the correctness of these ideas for structural
glasses also. Before doing so we will examine in detail the predictions of the mean-field
approach.

2.2. Equilibrium properties at low temperature

For simplicity let us consider the predictions that would follow from the application of the
replica approach to a system ofN particles interacting with a given Hamiltonian in a box.

We will consider for simplicity a system without any type of symmetry (the box is not
symmetric and the particles interact with the walls, periodic boundary conditions are not
used so that there is no translational invariance). We suppose that for a given value ofN

the Hamiltonian has many minima which we label byα.
The partition function can thus written as

Z(β,N) '
∑
α

exp(−βFα(β,N))

Fα(β,N) = Eα,N − T S(α,N)
(8)

where for simplicity we label the configurations in increasing free-energy order. For small
temperatures the entropic contribution to the free energy will be, as usual, negligible. It
is quite evident that for a finite system the partition function is dominated by the lowest
energy configurations in the limit of zero temperature, and we will suppose that this property
persists in the infinite-volume limit.

For different values ofN we will have quite different values of the free energies. The
lowest free-energy states will have free-energy differences of order 1, so that by adding
a single particle (i.e. going fromN to N + 1) we can strongly change the values of
the Fα(β,N). If we label by F0 the lowest free energy, we expect that the quantities
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Fα(β,N) − F0(β,N) remain of order 1 whenN goes to infinity, but they do not go to
any limit because they change withN . In this case it is natural to introduce a probability
distribution for the differences in free energies, which tell us the probability of finding a
given value ofFα(β,N) − F0(β,N) if we choose randomly (albeit large) the value ofN .
In other words if the value of the free energy changes strongly withN it is convenient to
introduce the probability distribution of their values.

The precise construction is the following: for any large value ofN we introduce a
reference free energyFR(β,N) such that, in the whole regionF − FR(β,N) << N , the
probability of finding a minimum of free energyF is given by

P(F) = exp(β(x(β)(F − FR(β,N))) (9)

where the quantityx(β) parametrizes the probability distribution.
The condition that the free energy is approximately given byFR implies that the integral∫ ∞

FR(β,N)

P (F ) exp(−β(F − FR(β,N)) (10)

is convergent and thereforex(β) 6 1.
The probability of finding a configuration in the minimum labelled byα is

wα ∝ exp(−βFα) (11)

where the normalization condition∑
α

wα = 1 (12)

is satisfied.
In many modelsx becomes equal to 1 at the temperatureTK . At low temperaturesx is

proportional to the temperature (it would be exactly proportional to the temperature if we
neglected the entropic contribution).

An important property of the model is how different the various minima are. The
simplest hypothesis is that they are as different as possible, i.e. the correlations among the
particles in one minimum and in another minimum (among those of lowest energy) are
zero. For example, the probability of finding two particles in two different minima at a
given distancer does not depend on the distance:

Pα,γ (r) =
∑
i,k

δ(xα(i)− xγ (k)− r) = ρ2. (13)

This hypothesis is usually called one-step replica symmetry breaking. More complicated
distributions of the distances are discussed in the literature.

If there are symmetries the situation becomes slightly more complex. For example in
a translational-invariant system ifx(i) are the coordinates of a minimum,x(i)+ δ are the
coordinates of another minimum. It is therefore useful to consider all the minima which
are related by a symmetry transformation as a single minimum.

2.3. The probability distribution of the distance

The properties of the system may be sharpened by introducing an appropriately defined
distanced between configurations of particles and looking at the corresponding equilibrium
probability distribution:

PN(d) =
∑
α,γ

wαwγ δ(d − dαγ ). (14)



4354 B Coluzzi and G Parisi

In the limit of largeN we have that

PN(d) = aNδ(d0− d)+ bNδ(d1− d) (15)

whereaN + bN = 1. Of course for a finite system the delta function will be smoothed.
The functionaN represents the probability of finding two different configurations in the

same minimum and it is given by

aN =
∑
α

w2
α. (16)

In the one-step replica symmetry breaking hypothesis two configurations that are not in
the same minimum are expected to be orthogonal, i.e. at the maximum possible distance
d1. This happens with the probability

bN =
∑
α 6=γ

wαwγ . (17)

The functionsaN andbN are naturally dependent on the temperature. In the mean-field
framework one finds that the weight of theδ-function in d1, bN , that is zero forT > TK ,
increases continuously when lowering the temperature below the transition point.

The probability distributionPN(d) should therefore be an appropriate observable for
looking at the transition from the high-T region (wherePN(d) is Gaussian-like for a finite
system) to the glassy phase in which it is expected to show a nontrivial behaviour, strongly
depending onN .

2.4. The approach to equilibrium

For simplicity we will direct attention to the relaxation of the energy density when the
system is quenched abruptly (at the timet = 0) from a random initial configuration (i.e.
infinite cooling rate) to the final temperature.

In the mean-field picture [14] one finds two different relaxation behaviours, depending
on the final temperature value.
• At high temperatures the energy reaches its equilibrium value exponentially, i.e.

e(t) = eeq+ c exp(−t/τ ). The relaxation timeτ increases when lowering the temperature
and it diverges forT → TD.
• Below the dynamical transition pointTD the energy behaves linearly as a function of

t−α [15], i.e. e(t) = eD + ct−α, the exponentα being weakly depending onT . Here
the system is evolving towards some metastable states (with an infinite lifetime) and
correspondingly the asymptotic energy valueeD is higher than that of the equilibrium.

The infinite lifetime of metastable states is just an artefact of the mean-field
approximation. In a real system we expect the approach to the equilibrium forT < TD
consisting of two steps.
• The convergence to some metastable states with a mean-field-like behaviour.
• The slow decay of metastable states due to activated processes. In this second step

the system reaches the true equilibrium state that will still be the replica-symmetric one for
T > TK .

This means that by looking ate(t) it is in principle possible to find numerical evidence
for the reminiscence in real glasses of the mean-field dynamical transition. HereTD is
expected to mark the onset of the two-steps relaxation.
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3. The model

We study a binary mixture of soft spheres, half of the particles being of typeA with radius
σA and half of typeB with radiusσB . The Hamiltonian is

Hpbc=
N∑

i<k=1

(
σ(i)+ σ(k)
|ri − rk|

)12

. (18)

This model has been carefully studied in the past [16–24]. It is known that the choice
σB/σA = 1.2 strongly inhibits crystallization. We also follow the convention of considering
particles with an average diameter of 1 by setting

(2σA)3+ 2(σA + σB)3+ (2σB)3
4

= 1. (19)

Thermodynamic quantities only depend on0 ≡ ρ/T 1/4, whereT = 1/β is the temperature
and we have taken the density to beρ = 1 (0 ≡ β1/4). TheN particles move in a 3d cube
of sizeL = N(1/3). The glass transition is known [17] to happen around0c = 1.45.

In order to obtain numerical results on the equilibrium properties comparable with the
mean-field theoretical picture we attempt to measure the equilibrium probability distribution
P(d) of the distanced between states. Following the usual strategy in spin-glass simulations
we introduce two replicas of the system evolving contemporaneously and independently.
P(d) is then given by

P(d) ≡ 〈δ(d −D)〉 (20)

D being the appropriately defined distance between the configurations of the two replicas.
Labelling by {ri}, {si} the positions of theN particles in the two replicas, a natural

definition of D is the Euclidean one, minimized over permutationsπ , rotations and
reflections R and, when using periodic boundary conditions, translations T:

D2 ≡ 1

N
min
π,R,T

( ∑
type A

(ri − sπ(i))2+
∑

type B

(ri − sπ(i))2
)
. (21)

An analogous definition of distance between configurations of particles has been considered
in [25] and in [26], in studies of potential energy minima for Lennard-Jones systems.

We minimize over permutations by an approximate procedure. For each particlei of
one configuration we takeπ(i) being the nearest one of the other. We expect this to be
a reasonable approximation in the considered temperature range (from0 = 1 to 0 = 2)
since the probability for two particles of the same system of being at a distance lower
than 2σ ' 1 is very close to zero at not too high temperatures (the radial density–density
correlation function in a simple liquid shows the well known behaviourg(r) ' 0 for
r < 2σ ).

Minimization over rotations and reflections is easily performed since in the case of a
3d cube R results a discrete group that includes 48 symmetry operations, corresponding to
the 23 reflections and to the 3! permutations of axes. On the other hand, minimization over
the continuous group of translations is a hard task and we prefer to avoid it by not using
periodic boundary conditions.

To measureP(d) we consider a slightly modified model in which particles are definitely
confined in the cubic box of sizeL by a soft walls-repulsive potential term:

Hsw = Hpbc+ c1

N∑
i=1

3∑
µ=1

(
1

(c2+ riµ)10
+ 1

(L+ c2− riµ)10

)
. (22)
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We have chosen the valuesc1 = π/5 andc2 = 0.6 that give a behaviour of the energy as a
function of0 quite near to that of the periodic boundary conditions case.

4. Numerical results on the dynamics

4.1. Algorithms

Both for finding the best numerical approach to the simulations of structural glasses at the
equilibrium and for studying the dynamical properties of the model we have implemented
different algorithms, considering stochastic and deterministic dynamics.
• Monte Carlo (MC). We start from a random configuration and we quench abruptly

the system by putting it at the final temperature (i.e. infinite cooling rate). During one step
each particle is suggested to move by a random quantity and a maximum shift permitted is
chosen in order to obtain an acceptance ratio near 0.5.
• Molecular dynamics (MD). Using MD to start with a completely random spatial

configuration may cause difficulties. Here the initial spatial configuration is obtained
from a random one by 60 MC steps at the final temperature. At the beginning and
again each 100 steps we extract momenta{pi} according to the Boltzmann distribution
(we have taken the masses of particlesmA = mB = 1) and we impose the condition∑N

i=1pi
2 = (3N−fMD)T , wherefMD is the number of frozen degrees of freedom.fMD = 3

when using periodic boundary conditions since the three components of the total linear
momentumP are conserved (we have takenP = 0), otherwisefMD = 0. We use the
velocity-Verlet algorithm [27] withδt = 1

250 (a value that we have checked to be reasonable
in our case, e.g. the total energy results perfectly constant).
• Isothermal molecular dynamics (IMD). The system evolves according to the Gaussian

isokinetic equations of motion [27]:

ṙi = pi ṗi = Fi − λpi λ =
∑N

i=1Fi · pi∑
i pi

2
. (23)

At the beginning we extract momenta and we fix the constraint
∑N

i=1pi
2 = (3N − fIMD )T ,

wherefIMD = fMD + 1. Also in this case we start from a spatial configuration obtained
from a random one by 60 MC steps at the final temperature. We implement the algorithm
by using a variant of the leap-frog scheme [27] again withδt = 1

250.
• Parallel tempering (PT). Algorithms in which the temperature is allowed to become

a dynamical variable [28] are very effective for thermalizing systems with a complex
free-energy landscape. In this recently introduced [29] method a set ofn different β
values β1 < · · · < βk . . . βn is chosena priori and n replicas of the system evolve
contemporaneously. The extended HamiltonianHPT =

∑n
a=1 β(a)H[Ca] is defined and

exchanges of temperatures between replicas

(β(a1) = βk1, β(a2) = βk2)→ (β(a1) = βk2, β(a2) = βk1)

are allowed with probabilityp = min[1, exp(−1HPT)]. The whole process is itself a
Markov chain and, when equilibrium has been reached, each replica moves between different
temperatures of the set remaining at the equilibrium. We start by extracting independently
the n random initial configurations and we quench each replica at a different one of the
chosen temperatures. In a PT step, sequentially fora = 1 . . . n:

—replicaa makes one MC step at its temperatureβ(a) = βk;
—a random numberj = ±1 with equal probability is extracted;
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—for 1 6 k + j 6 n the exchange of temperatures between replicaa and replicab,
whereβ(b) = βk+j , is suggested and possibly accepted.

The set ofβ values should be chosen carefully. We find that for the numbers of
particles considered (up toN = 36) PT works well down to0 = 2 with n = 13 different
temperatures (0 = 1, 1.05. . .1.2, 1.3. . .2).
• We have implemented and tested a combined technique of PT and Isothermal

molecular dynamics (IMDPT). Then initial spatial configurations are obtained from random
ones by 60 MC steps at0 = 1. After extracting momenta we impose the constraints∑N

i=1(pi
a)2 = (3N − fIMD )Ta, a = 1 . . . n (we have taken the same set of temperatures

as in PT). Replicas evolve accordingly to IMD and each 10 IMD steps the exchanges
of temperatures happen with probabilityp = min[1, exp(−1HPT)], where inHPT only
potential energies appear. Here to change temperatureTold → Tnew means to transform
momenta aspi → (Tnew/Told)

1/2pi , i = 1 . . . N .
• Finally we have performed MC simulations of large systems (2000 and 8000 particles)

in the periodic boundary conditions case, by putting a cut-off on the soft spheres’ potential:

Vik =


(
σ(i)+ σ(k)
|ri − rk|

)12

for |ri − rk| < R(
σ(i)+ σ(k)

R

)12

otherwise.

(24)

The algorithm is then implemented in such a way that for each particle the map of those
which are at distance lower thanR + 2δ is recorded and updated during the run (δ being
the maximum shift permitted to a particle in one MC step). We have chosenR = 1.7 that
means a practically negligibleV 0

ik ∼ O(10−3)(Vik ∼ 1 for |ri − rk| ∼ 2σ ).

4.2. On the energy relaxation behaviour

We look at the (potential) energy density relaxation when the system is quenched abruptly
from a random initial configuration to the final (low) temperature. We compare results
obtained by different numerical methods forN = 34 particles and we extend the analysis
to large systems (N = 2000 andN = 8000) in the MC case. Here periodic boundary
conditions are used.

In figures 1–3 we present data obtained by MC, MD and IMD, respectively. Our results
show no evident difference between stochastic and deterministic dynamics. Not only in the
MC case, as already observed in previous simulations on the same model [22], but also
when using MD techniques the energy density relaxation is well compatible on a large-time
window with a linear behaviour as a function oft−α. We obtain a nonsmall exponent
α ∼ 0.8, weakly0-dependent in the considered range (the dependence seems slightly more
pronounced in the IMD case).

Moreover the energy values at a fixed temperature that one can estimate by
asymptotically extrapolating the linear behaviours obtained by different methods are nearly
the same. On the other hand we are going to show that these asymptotic values (apart from
the case of0 = 1.4) are not the real equilibrium energy values of the system.

We present in figures 4 and 5 PT and IMDPT data. There is a reminiscence of the
linear behaviour but here the system moves between the high and the low temperatures
of the set, this prevents it from becoming trapped. At the end of the (quite large) time
window, equilibrium is nearly reached and the energy values are definitely smaller than those
estimable by extrapolating simple MC or MD data. The difference is already detectable at
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Figure 1. MC data one as a function ofy = t (−0.8) at 0 = 1.4 (+), 1.6 (×), 1.8 (∗) and 2.0
(�). Here 150 different initial conditions are considered.

Figure 2. MD data one as a function ofy = t (−0.8) at 0 = 1.4 (+), 1.6 (×), 1.8 (∗) and 2.0
(�). Here 100 different initial conditions are considered. When using MD techniques the need
for a not completely random initial configuration (i.e. the first 60 steps are MC steps) induces
some short-time effects and the linear behaviour takes place at a slightly larger time than in the
MC case.

0 = 1.6 and it becomes more pronounced at lower temperatures. To further outline this
result we plot in figure 6 data obtained by various methods at0 = 2.0.

We have found numerical evidence for the energy relaxation at low temperatures
consisting of two processes that happen on remarkably well-separated timescales. Both
in the MC and in the MD data the first step is clearly observable, corresponding to the
convergence to some metastable states with a mean-field-like behaviour (note thatα is
weakly dependent on the temperature over a large range). The fact that the extrapolated
energy values are not the real equilibrium values gives evidence for the presence of a second
step, the slow decay of metastable states dominated by activated processes.

These results are inadequate for understanding whether the curvature of low-temperature
data one(y) at very large times (smally = t−α) is related to the quite smallN value that
we are considering or it actually represents the beginning of the second step (possibly with
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Figure 3. IMD data one as a function ofy = t (−0.8) at 0 = 1.4 (+), 1.6 (×), 1.8 (∗) and
2.0 (�). Here 100 different initial conditions are considered. The dependence ofα on 0 seems
slightly more pronounced in this case, our best estimates ranging fromα ∼ 0.8 at 0 = 1.4 to
α ∼ 1.1 at0 = 2.0.

Figure 4. PT data one as a function ofy = t (−0.8) at 0 = 1.4 (+), 1.6 (×), 1.8 (∗) and 2.0
(�). Here 24 different initial conditions are considered. Note that in both this case and the
IMDPT one, the obtained behaviour depends on the entire set of temperatures.

an intermediateplateau). In order to clarify this point we consider definitely larger systems.
We plot in figure 7e(y) as obtained by MC simulations forN = 8000 at0 = 1.4,

1.5, 1.8 and 3.0. At0 = 1.8 we also present data forN = 2000 the results of which are
almost indistinguishable from theN = 8000 ones and remarkably similar to MC data for
the significantly smallerN = 34 system. This means that we are actually looking both at
the first relaxation step and at the beginning of the second one.

The different behaviours observed when varying the temperature agree well with the
previously discussed theoretical picture.
• At 0 = 1.4 no two-steps behaviour is observable and the energy reaches the

equilibrium value in the considered time window. The system still appears to be above
TD but quite near to it (the relaxation timeτ seems to be very large and the expected
exponential decay is not distinguishable from a linear behaviour as a function ofy).
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Figure 5. IMDPT data one as a function ofy = t (−0.8) at 0 = 1.4 (+), 1.6 (×), 1.8 (∗) and
2.0 (�). Here 24 different initial conditions are considered. Data are nearly compatible, within
error, with the PT ones.

Figure 6. Data one as a function ofy = t (−0.8) at 0 = 2.0 obtained by MC(+), MD (×),
IMD (∗), PT (�) and IMDPT (◦).

• For 0 > 1.5 the system is definitely belowTD. The energy relaxes linearly as a
function of y to a valueeD higher than that of equilibrium, the slow decay of metastable
states happens on a much larger timescale.
• The beginning of the second step is clearly observable at0 = 1.5 and still quite

evident at0 = 1.8 but disappears at0 = 3.0. Here data behave linearly over the entire
time window. This seems reasonable since the timescale that controls the second step (i.e.
the onset of activated processes) is expected to increase when lowering the temperature.

To fit the two-steps behaviour is a difficult task. In figure 8 we show our best
results at0 = 1.5 and 1.8 (N = 8000), obtained by fixingα = −0.8 and considering
e(t) = at(−0.8) + btγ + c It is interesting to note that in both cases we obtain a positiveγ

value of the same order,γ ∼ +0.1. It seems reasonable that the second step corresponds
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Figure 7. MC data one as a function ofy = t (−0.8) respectively forN = 8000 (one initial
condition) at0 = 1.4 (+), 1.5 (×), 1.8 (∗) and 3.0 (�) and forN = 2000 (two different initial
conditions) at0 = 1.8 (◦).

Figure 8. MC data one as a function ofy = t (−0.8) for N = 8000 at0 = 1.5 (+) and 1.8 (×).
The lines are the corresponding best fits toe(t) = at(−0.8) + btγ + c obtained by the plotted
points.

to a streched exponential decay, i.e.e(t) = a1(t/τ1)
−α + a2 exp(−C(t/τ2)

+|γ |) + eeq '
at(−0.8) − |b|t+|γ | + eplateau for t � τ2. However, we stress that this is a purely indicative
result, since quite differentγ values (possibly of the opposite sign) are obtainable by slightly
varyingα or the time window.

To conclude this section, we note that IMDPT works well but seems to be no more
effective than usual PT. We have also performed some dynamical simulations with different
methods in the case of the Hamiltonian (22). We do not show the results that are qualitatively
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similar to those obtained by using periodic boundary conditions, the only difference being
that here the onset of the second step becomes evident at shorter times.

5. Numerical results on the statics

5.1. Simulations at the equilibrium

In order to obtain the equilibrium behaviour ofP(d) we use PT, simulating
contemporaneously two independent sets of replicas. Thermalization is a hard task and
we limit our analysis to quite small numbers of particles ranging fromN = 28 toN = 36.
For eachN value we perform an extensive simulation of 222–224 PT steps (i.e. up to more
than 16 million MC steps for each one of the 26 replicas). We measure all the quantities
we are interested in during the last3

4 of the run.
Thermalization is checked in different ways.
• We divide the last part of the run, in which statistics is collected, into 16 equal

intervals and we look for possible shifts of the corresponding mean values (particularly we
do not find evident changes in the behaviour ofP(d)).
•We check that each replica moves more than once from an extrema of the temperature

range to the other and back in the last part of the run.
•We valuate the specific heatc using bothc = ∂〈e〉/∂T andT 2c = 〈e2〉−〈e〉2, checking

for compatibility of the results.
Errors are estimated from the mean values obtained in each of the 16 intervals.
Despite our efforts it is not possible to exclude the presence of lower minima in the

free energy landscape that are not accessible to the system on the considered time scale.
To clarify this point it is interesting to look at the particular valueN = 32= 43/2. Here
particles are allowed to fill all the sites of a fcc structure. Once this crystalline equilibrium
state has been reached (in about 224–225 PT steps) the system rests definitely trapped in
it, the crystalline configuration corresponding to a ‘golf-hole’ shaped minimum in the free-
energy landscape. The energy density results in a discontinuous function of0 as expected
for a first-order (liquid-crystal) transition.

It seems unlikely to us but particles could also be able to arrange themselves in some
sort of crystalline configuration that we have not detected forN 6= 32. On the other hand
we would like to look at the glass equilibrium states, apart from the possible presence of
lower crystalline minima. We therefore find it reasonable to assume that on the timescale
studied, the system extensively explores the entire phase-space region we are interested in.

5.2. On the behaviour ofP(d)

Data on the energy densitye(0) for differentN values are plotted in figure 9. Note that the
equilibrium energy density is not a regular function of the number of particles since it is
definitely smaller forN = 34 than forN = 36. The nontrivialN -dependence of the model
at low temperatures is outlined when looking at the specific heatc(0) (figure 10).

It should be stressed that for each givenN value the energy appears a continuous
function of 0 and correspondingly the behaviour ofc(0) looks quite smooth, this gives
evidence that the physics phenomenon we are studying is not a crystallization process.
Moreover, we never observed the system definitely trapped in a configuration as in the
previously discussedN = 32 case.

In figure 11 we plot data onP(d) for different N values at the highest temperature
considered (0 = 1). The shape is Gaussian-like, characteristic of the liquid phase and it
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Figure 9. Data on the energy densitye as a function of0 for N = 28 (+), 30 (×), 34 (∗) and
36 (�). Lines are only to join neighbouring points.

Figure 10. Data on the specific heatc as a function of0 for N = 28 (+), 30 (×), 34 (∗) and
36 (�). Lines are only to join neighbouring points.

changes very little when varying the number of particles.
Finally in figures 12–15 we present the low-temperature data onP(d) respectively for

N = 28, 30, 34 and 36. The qualitative features are the same for different numbers of
particles. The behaviour changes in a remarkably short0 range around0 = 0∗ andP(d)
looks highly nontrivial at higher0 values. The physical meaning of the peaks shown by the
equilibrium probability distribution of distance between states in the low-temperature region
comes from the mean-field theoretical picture. In this region the data are well consistent
with the scenario that in the glassy phase a small number of valleys in the free-energy
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Figure 11. Data onP(d) at 0 = 1 for N = 28 (+), 30 (×), 34 (∗) and 36 (�).

Figure 12. Data onP(d) for N = 28. From left to right and top to bottom0 = 1.5, 1.6, 1.7,
1.8, 1.9 and 2. Plotted data have been measured during a 224 PT-step run but we stress that
they are perfectly compatible with those obtained by a previous 222 step run.

landscape give the dominant contribution to the partition function.
Both the value of0∗ and theP(d) shape in the glassy phase are strongly dependent

on N . Differences are also evident when the number of particles is varied by only 2
(i.e. betweenN = 28 and 30 orN = 34 and 36). This is easily understandable since
a little difference inN can change abruptly the kinds (and the number) of configurations
that maximize and that are near to maximizing the relative distances between the particles
(minimizing the Hamiltonian). On the other hand, the observed nontrivial dependence of
the behaviour of the model on the number of particles seems to agree withN affecting



The equilibrium properties of a glass-forming model 4365

Figure 13. Data onP(d) for N = 30. From left to right and top to bottom0 = 1.5, 1.6, 1.7,
1.8, 1.9 and 2 (i.e. the same values as in figure 12). Here data have been measured during a 222

PT-step run.

Figure 14. Data onP(d) for N = 34. From left to right and top to bottom0 = 1.2, 1.3, 1.4,
1.6, 1.8 and 2. Here and in the next case ofN = 36 data have been measured during a 224

PT-step run.

structural glasses in some way in the same role that quenched random variables play in spin
glasses.

As a last remark we note that when reaching0 values much higher than0∗ some
peaks ofP(d) disappear and the height of the other ones (usually corresponding to smaller
d values) goes up. This seems quite reasonable in a finite-size system with continuous
degrees of freedom since, in spite of the absence of a perfectly crystalline ground state only
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Figure 15. Data onP(d) for N = 36. From left to right and top to bottom0 = 1.2, 1.3, 1.4,
1.6, 1.8 and 2.0 (i.e. the same values as in figure 14).

a few configurations of the particles are really expected to minimize the Hamiltonian.
The natural next step in this analysis should consist of trying to find the behaviour of

quantities averaged over differentN values. We advance that from early new results [30] a
slightly different definition of distance seems to be more suitable for mixtures and it could
make this kind of study easier, permitting us to gain further insight into structural-glass
properties.

6. Conclusions

We find numerical evidence for the behaviour of the considered glass-forming model being
well consistent with some theoretical predictions obtainable by applying to structural glasses
(with the appropriate modifications) the mean-field scenario that is implemented in a large
class of infinite-range models.

To sum up our main results:
• When the system is quenched abruptly from a random initial configuration to a final

low temperature, the energy density relaxation consists of two clearly distinguishable steps
that happen on remarkably well-separated timescales.

The first step corresponds to the convergence to some metastable states with the mean-
field-like behavioure(t) ∝ t−α, where the exponentα ' 0.8 is weakly dependent onT
in the considered range (we obtain very similar results by a MC dynamics and by MD
techniques).

The fact that the extrapolated energy values are not the real equilibrium values indicates
the presence of a second step, the slow decay of metastable states dominated by activated
processes. The beginning of this second step is observable at very large times and its
presence is confirmed by simulations on quite large systems.

We find therefore numerical evidence for a reminiscence in structural glasses of the
mean-field dynamical transition,TD being here the temperature that marks the onset of the
two-steps relaxation.
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• The equilibrium probability distributionP(d) of an appropriately defined distanced
between states, that is Gaussian at high temperatures, quite abruptly becomes nontrivial
at low T values. P(d) seems, therefore, a suitable observable for describing the
thermodynamical transition of the system from the liquid to the glassy phase.

In the mean-field picture only a small number of valleys in the free-energy landscape
give the dominant contribution to the partition function in the glassy phase. The pronounced
peaks thatP(d) shows at low temperatures are well consistent with this scenario.

The qualitative behaviour ofP(q) is the same for the differentN values considered but
the shape in the glassy phase results strongly and nontriviallyN -dependent. This seems
to confirm the hypothesis that the number of particlesN in some way affects structural
glasses, the same role that quenched random variables play in spin glasses.

Unfortunately, to achieve equilibrium and measured in a reasonable time, one is forced
to consider systems that are not too large and to not use periodic boundary conditions. On
the other hand, one also needs to carefully avoid possible crystalline minima that, in the
case of quite small systems, could be reached on the same timescale of the glass equilibrium
states. These difficulties make the study ofP(d) a difficult task, preventing us from a more
quantitative analysis.
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